py-elevator Documentation
Release 0.4

oleiade

October 23, 2012

CONTENTS

py-elevator Documentation, Release 0.4

py-elevator is a python client for Elevator, in Python and based on levelDB allowing high performance on-disk bulk
read/write. Which provides async, multithreaded and/or remote access to a multi-leveldb backend. It Relies on the
zeromq network library and msgpack serialization format as a messaging protocol. It was made with portability,
stability, and focus on performance in mind.

CONTENTS 1

http://github.com/oleiade/Elevator

py-elevator Documentation, Release 0.4

2 CONTENTS

CHAPTER
ONE

REQUIREMENTS

pyzmg (built against zmg-3.X)
msgpack-python

py-elevator Documentation, Release 0.4

4 Chapter 1. Requirements

CHAPTER
TWO

INSTALLATION

To install the last stable version (master)

5 git clone git@Qgithub.com/oleiade/py-elevator
S cd py-elevator
> python setup.py install

To install the last tag with pip

pip install -e git+git@github.com/oleiade/py-elevator@{{tag-name}}.git#egg=py—-elevator

py-elevator Documentation, Release 0.4

6 Chapter 2. Installation

CHAPTER
THREE

Nota : See Elevator documentation for details about server usage and implementation

3.1 Databases workaround

>>> from pyelevator import Elevator

Elevator server holds a default db
which the client will automatically
connect to

>>> E = Elevator ()

>>> E.db_name

"default’

You can list remote databases
>>> E.listdb ()
["default’,]

Create a db
>>> E.createdb (' testdb’)
>>> E.listdb ()
["default’, ’"testdb’,]

And bind your client to that new Db.
>>> E.connect ('testdb’)

Note that you canno’t connect to a db that doesn’t exist yet
>>> E.connect ('dbthatdoesntexist’)

DatabaseError : "Database does not exist"

Sometimes, leveldb just messes up with the backend

When you’re done with a db, you can drop it. Note that all it’s files

will be droped too.
>>> E.repairdb()
>>> E.dropdb (' testdb’)

You can even register a pre-existing leveldb db

as an Elevator db. By creating it using it’s path.
>>> E.createdb (’ /path/to/my/existing/leveldb’)

>>> E.listdb ()

["default’, ’/path/to/my/existing/leveldb’,]

USAGE

http://elevator.readthedocs.org

py-elevator Documentation, Release 0.4

3.2 Interact with a database

>>> from pyelevator import Elevator
>>> E = Elevator() # N.B : connected to ’default’

>>> E.Put ("abc’, 7123")
>>> E.Put ('easy as’, 'do re mi’)
>>> E.Get ("abc’)
1123’
>>> E.MGet ([’abc’, ’easy as’, ’"you and me’])
[7123", 'do re mi’, None]
>>> E.Delete (’abc’)
>>> for i in xrange (10):
E.Put (str (i), str(i))

Range supports key_from, key_to params
>>> E.Range('1’, 797)
(e, r1rd,

[r27,72'1,
('3, 131,
(14, 141,
"5, '5'1,
("6, "6'1,
"7, 171,
('8, "8'1,
("9, 191,

Or key_from, limit params
>>> E.Slice(’1", 2)
rerr, 71,
(rz2r, 21,
]

When Rangelter only knows about key_from/key_to for py-leveldb api

compatibility reasons
>>> it = E.Rangelter('1’, ’'27)
>>> list (it)
rer1r, r10g,
[(r2r, r2'1,
]

Elevator objects supports with_statement too
>>> with Elevator ('testdb’) as e:

>>>e.Get ("1")

>>>

Ill

Chapter 3. Usage

CHAPTER
FOUR

BATCHES

They’re very handy and very fast when it comes to write a lot of datas to the database. See LevelDB documentation
for more informations. Use it through the WriteBatch client module class. It has three base methods modeled on
LevelDB’s Put, Delete, Write.

>>> from pyelevator import WriteBatch, Elevator

Just like Elevator object, WriteBatch connects to ’"default’ as a default
But as it supports the exact same options that Elevator, you can

Init it with a pre-existing db

>>> batch = WriteBatch ()

>>> batch = WriteBatch(’testdb’)

>>> batch.Put(‘a’, ’a
>>> batch.Put ('b’, 'b’)
>>> batch.Put('c’, ’c
>>> batch.Delete(’c’)
>>> batch.Write ()

>>> E = Elevator()

>>> E.Get ("a’)

rar

>>> E.Get ("b")

Ibl

>>> E.Get ("c’)

KeyError: "Key not found"

Batches objects supports with_statement too

Write will be automatically called on __exit___
>>> with WriteBatch (' testdb’) as batch:

>>>batch.Put ("abc’, 7123")

>>>batch.Put (’or simple as...’, "do re mi’)

py-elevator Documentation, Release 0.4

10 Chapter 4. Batches

CHAPTER
FIVE

API

5.1 Elevator object

5.1.1 Database store management

e connect : db_name
e listdb

* createdb : db_name
e dropdb : db_name

* repairdb

* Read/Write

Nota : Every functions are handling a kwarg timeout param which defines in seconds how long the client
should wait for a server response. You might wanna set this to a high value when processing large datas sets
(Range/Rangeiter/MGet).

* Get : key, value
* Put : key, value
* Delete: key

* Range [start, limit] limit can whether be a string, and will be considered a stop key then, or an int, and will be
considered as an offset.

* Rangelter : key_from, key_to

MGet [keys] Keys should whether be a list or a tuple of strings Accepts a specific fill_cache kwarg, which is
by default set to False. Defines if the leveldb backend cache should be updated with fetched values or not.
When proceeding to “small” and/or repetitive random read, you might want to set this option to True; but
for bulk reads on medium and large sets, keep it set to False.

5.2 WriteBatch object

Nota : idem than Read/Write
* Put : key, value
* Delete: key

* Write

11

